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Abstract
Image-to-image translation translates an image from one domain to another. The goal is to learn the translation relationship

between different image domains. Compared with the translation models to be trained using paired training data,

CycleGAN has the advantage of learning to translate between domains without paired input–output training examples.

However, when using CycleGAN to translate images among multiple domains, the complexity of the model increases

nonlinearly with the number of domains. To reduce the model complexity of CycleGAN-based translation models, we

assume that there is a hidden space shared by different domains, and this space stores the common features of images.

Then, we design a common encoder to learn image features in the hidden space. Based on the hidden space, we propose a

translation model that scales linearly with the number of domains. To further improve the common feature representation

accuracy, we introduce the adversarial component in the hidden space to learn the common features. We test the proposed

models on different datasets, including painting style and season transfer datasets and achieve good results.
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1 Introduction

Image translation refers to transferring the style of an

image from one domain to another domain, such as

changing a scene from spring to winter and changing the

painting style of pictures. Analogous to automatic language

translation, image-to-image translation can be defined as

the problem of translating the representation of an image

from the source domain into that of the target domain while

still retaining the semantic content of the source image.

Generative adversarial networks (GANs) [1, 2] can

avoid the difficulty of approximating many

intractable probabilistic computations and have been

effectively used to train generative models. At present,

different GANs have been proposed to transfer one image

style into another. Isola et al. [3] proposed conditional

adversarial networks for image-to-image translation tasks.

These networks not only learn the mapping from the input

image to the output image but also learn a loss function to

train this mapping. However, this model needs to be trained

using paired training data (one object represented using

two different styles), which are difficult to obtain. To solve

this issue, CycleGAN is proposed. CycleGAN can be

trained using unpaired data samples. The model couples

with inverse mapping and introduces a cycle consistency

loss to guarantee convergence.

Cycle GAN is only applied to translate images between

two domains. If the model is extended to multiple domains,

the model complexity increases nonlinearly. For example,

if there are n domains, (n2 - n) generators (including

decoders and encoders) and (n2 - n) discriminators are

required. In this paper, we study how to reduce the com-

putational complexity of multidomain image translation

models. We make the following contributions.

(1) We assume there is a hidden common space shared

by different image domains, and this space stores the

common features of images. Based on this assump-

tion, we propose a novel GAN model, named the

generative adversarial networks based on hidden

space sharing (HssGAN). HssGAN contains only one

common encoder that is used to learn the features of
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a hidden space. Therefore, the model complexity of

HssGAN increases linearly with the number of

image domains.

(2) To further improve the representation power of the

common encoder, we add a generative adversarial

component in an HssGAN and use adversarial

training to learn the features of the hidden space.

2 Related work

The goal of the image translation task is to translate an

image a from domain A to image b in another domain

B. The following methods have been proposed for image

translation.

2.1 Methods separating the content
from the image style

References [4, 5] used a convolutional neural network to

learn image representations. The neural algorithm of

artistic style was proposed to separate the image content

from its style. The algorithm can mix the content and style

independently to synthesize new, perceptually meaningful

images.

Ulyanov et al. [6] proposed an alternative approach that

can reduce the computational complexity in the learning

stage. Given a single example of a texture, a convolutional

neural network is trained to generate different samples of

the same texture of arbitrary size and synthesize the artistic

style from a given image with any other image.

Johnson et al. [22] combined feed-forward image

transformation networks with optimization-based methods

for image generation and used perceptual loss functions to

train convolutional neural networks. The experimental

results on image style translation show that compared to

the optimization-based method, the proposed network can

generate images of similar quality, but the speed is three

orders of magnitude faster.

Long et al. [7] adapted several classic classification

networks into fully convolutional networks and transferred

the learned representations by fine-tuning to the segmen-

tation task. They proposed a skip structure that can fuse

both the semantic information from a deep layer and the

appearance information from a shallow layer to generate

detailed and accurate segmentations. Xu et al. [8] used a

fully convolutional generator based on two subnetworks to

implement image-to-image translation. The first subnet-

work generates the outline of an image in a new domain,

and the second subnetwork translates the outline to a

visually realistic image. Karatsiolis et al. [9] proposed a

hierarchical structure that can encapsulate the information

of the target domain using a separately trained network.

This hierarchical structure is then trained into a unified

depth network for image translation.

Convolutional neural network-based translation models

are trained to minimize a loss function. Therefore, one key

problem is how to design an effective loss function. In

previous papers [10, 11], the authors proposed that the loss

function designed to minimize the Euclidean distance

between two domains easily generates ambiguous images.

2.2 Image-based methods

These kinds of methods use image processing methods to

translate images. Efroset et al. [5] proposed the image

quilting algorithm to synthesize image texture and exten-

ded the algorithm to perform texture transfer by replacing

the texture of an image with the texture from a different

image. Hertzmann et al. [12] proposed a framework for

generalizing texture synthesis for the case of two corre-

sponding image pairs. They used image pairs (one image is

a ‘‘filtered’’ version of the other) to train artistic filters and

then used the filters to change the painting style of an

image.

2.3 GAN-based methods

Liu et al. [16] proposed a coupled generative adversarial

network (CoGAN) for learning a joint distribution of

multidomain images. CoGAN can learn a joint distribution

from samples selected from the marginal distributions. The

joint distribution is calculated by implementing a weight-

sharing constraint that limits the network capacity. Taig-

man et al. [26] proposed the domain transfer network to

translate images. The network employs a compound loss

function that includes a multi-class GAN loss, an f-con-

stancy component and a regular component that encour-

ages the generator to map images from one domain to

another.

Isola et al. [3] proposed conditional adversarial networks

to solve image-to-image translation problems. The model

can simultaneously learn the mapping from the input image

to the output image and a loss function to train this map-

ping. This approach makes it possible to use the same

generic method to problems that have different loss func-

tions. Zhu et al. [2] proposed CycleGAN to solve this

problem. In this model, the cycle consistency loss is

designed to train a generative adversarial network. Unlike

the pix2pix method [3, 5], CycleGAN does not require

paired data for training. StarGAN [13] and SemiStarGAN

[14] are CycleGAN-based image-to-image translation

models, which can implement multidomain image trans-

lation. There is only one shared generator in these models.

In fact, it is very difficult to train a general generator which
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can generate images belonging to different domains.

Anoosheh et al. [15] pointed out that these models share

one generator, and they are only suitable for translating

images between image domains that are sufficiently similar

to each other. Currently, StarGAN and SemiStarGAN were

only applied to the task of face attribute modification,

where all the domains were slight shifts in qualities of the

same category of images: human faces.

CycleGAN translates images only between two image

domains. To translate images among n domains, we need to

train Oðn2Þ models. In this paper, we propose a novel GAN

structure based on CycleGAN. Similar to CycleGAN, the

proposed model also uses the cycle consistency loss to

learn the mapping relations between different domains.

Unlike CycleGAN, the proposed model can translate

images among multiple domains; the generator in our

model is divided into two parts, the encoder and decoder;

and the encoder is shared by all the domains. Therefore, for

n domains, we need to train only OðnÞ models.

3 Image translation model based on hidden
space sharing

3.1 Problems

Image-to-image translation learns the mapping between an

input image and an output image [16]. Usually, a training

set of aligned image pairs is required to train an image

translation model. In practice, it is difficult to collect a

paired training set. To solve this issue, CycleGAN [2] is

proposed. CycleGAN includes two adversarial models: one

model contains a generator GA2B and a discriminator DisB
(see Fig. 1).GA2B is trained to translate an image from

domain A to an image in domain B, and DisB is trained to

discriminate between real images in domain B and images

translated through GA2B. In this model, an input image IA

from domain A is translated into an image IA2B

(IA2B ¼ GA2B IAð Þ) of domain B through GA2B, and then

the discriminator DisB of domain B determines whether

the translated image satisfies the characteristics of

domain B. To learn from unpaired examples, an inverse

translation is introduced to force ICycle A � IA
(ICycle A ¼ GB2A GA2B IAð Þð Þ), and vice versa. This process

is implemented by introducing a cycle consistency loss

Lcycle ¼ GB2A GA2B IAð Þð Þ � IAk k1. The other adversarial

model adopts the same strategy to translate an image from

domain B into that of domain A,we do not discuss this

strategy in detail here.

In CycleGAN, the generator for each domain includes

two parts, namely, an encoder and a decoder, and the two

parts are closely coupled. For example, GA2B consists of an

encoder and a decoder, and the two parts work together to

translate an image from A to B. The close coupling between

the encoder and decoder makes it difficult for CycleGAN

to translate images among multiple domains. For example,

if we add a new image domain C for translation, we need to

create six generators, GA2B, GA2C, GB2A, GB2C, GC2A and

GC2B. If there are N image domains, n(n- 1) generators

would be trained. We can see that the model complexity

increases nonlinearly with the increase in image domains.

It is time consuming to use CycleGAN to translate images

among multiple domains. Therefore, the motivation of our

research is how to design an efficient model for translating

images among multiple domains.

3.2 GAN based on hidden space sharing
(HssGAN)

In an adversarial network, the generator includes two parts,

an encoder and a decoder. The encoder converts an image

from domain A into a feature representation in a feature

space, and the decoder translates the feature representation

into an image in domain B. To correctly translate an image

from domain A to domain B, the feature representation

needs to contain two kinds of features: common features

not specific to a certain domain and the style features

specific to domain B. For example, a house can be painted

in different styles, but all houses have common features,

such as doors and windows. In addition, each house also

has its own style features. Based on this assumption, we

assume there is a hidden space called the common feature

space, and all the images from different domains can be

translated into a feature representation (common feature

representation) in this space. Thus, we separate the encoder

and the decoder of the generator. The encoder is respon-

sible for generating the common feature representation of

an image, and the decoder is responsible for translating a

EncA DecB

GA2B

DisB

EncB DecA

GB2A

DisA

IA2BIA

IA2B

ICycle_A

Fig. 1 The structure of a CycleGAN model
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common feature vector into an image and adding style

features into the image at the same time.

The proposed translation model (HssGAN) is shown in

Fig. 2. For the convenience of comparison, Fig. 2 gives the

structures of HssGAN and CycleGAN for translation

among three image domains. In the HssGAN model, the

generator contains one common encoder Enc and the

decoders for each image domain, and all the decoders share

one encoder. The common encoder extracts the common

features of an image and then sends the feature vector to a

decoder to generate an image. Deci is the decoder for

domain i; it decodes a common feature representation into

an image of domain i. Disi is the discriminator corre-

sponding to Deci; it is responsible for deciding whether the

image generated by Deci satisfies the characteristics of

domain i. In Fig. 2, the graph on the right gives the

structure of the CycleGAN. In this structure, Gi2j repre-

sents a generator that can translate an image from domain

i to domain j. In CycleGAN, the generator contains one

encoder and one decoder, and the two parts work together

and cannot be separated from each other. For HssGAN, an

image from any domain is input into the common encoder,

and the decoders translate the image into images of other

domains. For example, image I1from domain one is the

input data. The common encoder encodes I1 into a feature

vector Enc(I1), and then Enc(I1)is sent to decoders Dec2
and Dec3 to generate images for domain two and domain

three. For CycleGAN, the generator only translates an

image from one domain to another. Therefore, we need to

design a generator for any domain pair. In Fig. 2, if a new

domain, such as domain three, is added, for the HssGAN,

we need to add only one decoder Dec3 and one discrimi-

nator Dis3, while for the CycleGAN, we need to design

four generators and four discriminators, which are G123,

G223, G321, G322, Dis123, Dis223, Dis321 and Dis322.

Compared with CycleGAN, the model complexity of

HssGAN increases linearly with the number of image

domains.

In the HssGAN, the encoder, decoder and discriminator

are trained simultaneously. We construct the adversarial

loss and the cycle consistency loss to train them. Suppose

the training set is D ¼ x1; y1ð Þ; . . .; xm; ymð Þf g, where xi
is an image from domain yi. For convenience, we use (x, y)

to represent a training sample in D. Our goal is to learn the

parameters of the common encoder and the decoders for

each domain. With the learned encoder and decoders, we

can translate an input image x from any domain to the

image of the target domain T (output of DecT).

LGAN hEnc; hDecT ; hDisT ; Tð Þ

¼
X

ðx; yÞ2D; y¼T

DisT xð Þ � 1ð Þ2
h i

þ
X

ðx; yÞ2D; y 6¼T

DisT DecT Enc xð Þð Þð Þ2
h i

The adversarial loss for domain T is defined by Eq. (1).

For domain T, we need to train the generator Enc-DecT
(Enc is the common encoder) and the discriminator DisT. In

Eq. (1), hDisT denotes the parameters of the discriminator

DisT, which discriminates whether an image is a real image

from domain T or a generated image in domain T. hDecT

Dec1

Generator

Dis1

Enc

I1

Dec2

Dec3

Dis2

Dis3

I2

I3

Discriminators

HssGAN

Enc

Generators
G122

Dec Dis122

Discriminators

I1
I122

Enc

G221

Dec Dis221
I2

I221

Enc

G123

Dec Dis123
I1

I123

Enc

G223

Dec Dis223
I2

I223

CycleGAN

Enc Dec
G321 I321

Dis122
I3

I3 Enc Dec
G322 I322

Dis221

Fig. 2 Image translation model based on hidden space sharing (HssGAN)
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denotes the parameters of the decoder DecT, which gen-

erates an image in domain T. hEnc denotes the parameters of

the common encoder Enc. LGAN hEnc; hDecT ; hDisT ; Tð Þ
consists of two terms. The first term is the loss generated by

DisT when determining whether x (x 2 T) is a real image

from T, and the second term is the loss generated by DisT
when determining whether DecT Enc xð Þð Þ x 62 Tð Þ is a

translated image from domain T. We train DisT to minimize

LGAN hEnc; hDecT ; hDisT ; Tð Þ; at the same time, we train the

generator (Enc-DecT) to maximize the second term. In the

same way, the adversarial loss for other domains can be

constructed.

Similar to CycleGAN, we also use the cycle consistency

loss to regularize the highly unconstrained problem of

translating an image in only one direction. The cycle

consistency loss considers the mappings from one domain

to another to be inverses of each other such that

Decy Enc DecTð Þ Enc xð Þð Þð Þ � x y 6¼ Tð Þ. In Eq. (2), we

use the 1-norm to define the distance between two images.

Lcycle hEnc; hDecT ; Tð Þ
¼

X

ðx; yÞ2D; y 6¼T

jjDecy Enc DecT Enc xð Þð Þð Þð Þ � xjj1 ð2Þ

The optimization objective function for encoder Enc and

decoder DecT is shown in Eq. (3). The optimization

objective function consists of two parts: a GAN loss and a

cycle consistency loss. The encoder Enc, decoder DecT and

discriminator DisT are trained by minimizing the opti-

mization objective function. In the same way, we can

construct the optimization objective function for other

domains.

L hEnc; hDecT jhDisT ; Tð Þ ¼ Lcycle hEnc; hDecT ; Tð Þ
� LGAN hEnc; hDecT ; hDisT ; Tð Þ

ð3Þ

The flow chart of HssGAN is shown in Fig. 3. In Fig. 3,

we use a HssGAN that can translate images between two

domains to illustrate how the proposed model works. First,

we construct the GAN loss LGAN and use it to train the

model (see the labels marked as 1 in Fig. 3). In Fig. 3, a

real image I1 from domain one is sent to encoder Enc, and

Enc outputs a feature representation for I1, denoted by

Enc(I1). Enc(I1) is sent to decoder Dec1, and Dec1 gener-

ates an image for domain one, denoted by Dec1(Enc(I1)).

The discriminator Dis1 decides whether Dec1(Enc(I1)) is a

real image from domain one or a generated image for

domain one. If Dis1 makes a wrong decision, the GAN loss

LGAN is greater than zero, thus we can use LGAN to train

Dis1 by minimizing LGAN and train Dec1 and Enc by

maxmizing LGAN.

Second, we construct the cycle consistency loss Lcycle

and use it to train the model (see the labels marked as 2 in

Fig. 3). The cycle consistency loss for image I1 is con-

structed as follows. I1 is sent to encoder Enc and decoder

Dec2 to generate an image for domain two. The translated

image is denoted by Dec2(Enc(I1)). Then, the translated

image is sent to Enc and Dec1 to reconstruct image I1,

denoted by Cyc_I1. We can calculate the cycle consistency

loss Lcycle from I1 and Cyc_I1, and use Lcycle to train Enc

and Dec1 by minimizing the loss.

In our study, we implement HssGAN and test its per-

formance using different datasets (see Sect. 4). Compared

with the images generated by CycleGAN (see Fig. 9), the

textures of the images generated by HssGAN are more

reasonable (see Fig. 7 and the analysis in Sect. 4.2.2).

However, the images translated by HssGAN lose some

obvious features of the translated domain. Sometimes the

images translated by HssGAN show that blended features

exist in different domains. For example, in Fig. 7, the third

row shows the images that are translated from the real

image from the autumn domain. We can see that all the

translated images have some features belonging to the

winter domain; for example, some trees in all the translated

images are covered with snow. This phenomenon is unli-

kely to be caused by the decoders because the probability

that all three decoders commit the same error is very low.

One possible reason is that the feature vector generated by

the encoder cannot accurately represent the features of

different domains. Especially with the increase in the

number of domains, it becomes very difficult for HssGAN

to train a common encoder.

To improve the feature representation of the encoder, we

introduce adversarial learning in the hidden space, which is

shown in Fig. 4. For convenience, we call this translation

model HssGAN-HAL. To enrich the feature representation

contained in Enc(x), a discriminator for the hidden space,

Latent_Dis, is added. Latent_D is a multi-class classifier (a

softmax layer) that outputs the probability P yjEnc xð Þð Þ that

Dec1

Generator

Dis1

Enc
I1

Dec2 Dis2

1.Enc(I1)

2.Dec2(Enc(I1)

2.Cyc_I1

2.Enc(Dec2(Enc(I1)))

Discriminators

2.Lcycle = ||Cyc_I1– I1 ||1

LGAN

1.LGAN1.Dec1(Enc(I1))

Fig. 3 Flow chart of HssGAN
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Enc(x) belongs to domain y. If x is a real image from

domain y, Latent_Dis will try its best to classify Enc(x) as

y; that is, Latent_Dis maximizes P yjEnc xð Þð Þ. Latent_Dis

forces Enc(x) to learn more information so that it can better

represent the characteristics of each domain. The adver-

sarial loss for the hidden space is defined in Eq. (4). We

use Fig. 4 to interpret the working flow of the adversarial

learning module. In Figs. 4, I1, I2, I3 are the inputs of the

common encoder. Different from other models, the encoder

in HssGAN is a common encoder. So, the input of the

common encoder can be an image from any image domain.

For example, image I1 from domain 1 is randomly selected

as the input data of encoder Enc. Enc outputs a feature

vector Enc(I1) and sends it to Latent_Dis for classification.

Then, the classifier and Enc are trained by maximizing the

adversarial loss defined in Eq. (4). This training procedure

can make the feature vector Enc(x) contain more charac-

teristics specific to domain one. In fact, Latent_Dis is a

multi-class classifier. The goal of training the multi-class

classifier is to improve the performance of the common

encoder. So, the common encoder can learn a better feature

representation for the input image and then make the

decoder of each image domain generate a high quality

image. If the generated high quality image can deceive the

discriminator of the target domain, the performance of the

discriminator can be further improve by learning from the

high quality image. From this view, we regard the multi-

class classifier as an adversarial component.

Through adversarial training, it can be considered that

the feature representation output by the encoder contains

two kinds of information: a common representation and the

class information. This assumption is equivalent to adding

a supervised signal y into the feature representation gen-

erated by the encoder. For convenience, the feature

representation is described as\ z, y[ , where z is the

common representation of x, and y is the class label of x.

When training Deci using\ z, y[ , the supervised signal

can guide the decoder to generate images more consistent

with the characteristics of the target domain.

LGAN Latent hLatent Dis; hEncð Þ ¼
X

ðx; yÞ2D
logP yjEnc xð Þð Þ

After adding the adversarial learning component, the

optimization objective function for the encoder and deco-

der in domain T is defined in Eq. (5).

L hEnc; hDecT jhDisT ; hLatent Dis; Tð Þ
¼ �LGAN hEnc; hDecT ; hDisT ; Tð Þ
þ Lcycle hEnc; hDecT ; Tð Þ þ LGAN Latent hLatent Dis; hEncð Þ

ð5Þ

In HssGAN, the encoder and decoder adopt the network

structure proposed by Johnson et al. (2016), and the dis-

criminator adopts PatchGAN [23]. The detailed structure of

the encoder, decoder and discriminator is shown in Table 1.

In Table 1, (Nx, Kx, Sx) describes the parameters for each

layer; for example, (N64, K7, S1) means that the number of

neurons is 64, the kernel size is 7 9 7, and the stride is 1.In

the encoder, all the convolutional layers and residual

blocks are followed by instance normalization and ReLU

nonlinearities. The neurons in the discriminator use Lea-

kyReLU as the activation function.

Dec1

Generator

Dis1

Enc

I1

Dec2

Dec3

Dis2

Dis3

I2

I3

Discriminators

Latent_Dis
P(y|Enc(x))

Adversarial
Component

Fig. 4 HssGAN with adversarial learning in the hidden space

(HssGAN-HAL)

Table 1 Network structure of the HssGAN

Layer Encoders

1 CONV—(N64, K7, S1), InsNorm, ReLU

2 CONV—(N128, K3, S2), InsNorm, ReLU

3 CONV—(N256, K3, S2), InsNorm, ReLU

4–7 RESBLK—(N256, K3, S1), InsNorm, ReLU

Layer Decoders

1–5 RESBLK—(N256, K3, S1), InsNorm, ReLU

6 DCONV—(N128, K4, S2), InsNorm, ReLU

7 DCONV—(N64, K4, S2), InsNorm, ReLU

8 CONV—(N3, K7, S1), Tanh

Layer Discriminators

1 CONV-(N64, K4, S2), LkReLU

2 CONV—(N128, K4, S2), InsNorm, LkReLU

3 CONV—(N256, K4, S2), InsNorm, LkReLU

4 CONV—(N512, K4, S1), InsNorm, LkReLU

5 CONV—(N1, K4, S1)
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4 Experiments

4.1 Datasets and evaluation metrics

We test the performance of the proposed model using three

datasets. The first dataset is a collection of maps and aerial

photos from Google Maps. We select 1096 images as the

training data and 100 images as the testing data.

The second dataset consists of photos of the Alps from

Flickr. The photos are classified into four seasons. The

training dataset includes 6000 photos, and the testing

dataset includes 1000 photos.

The third dataset is a collection of approximately 10,000

paintings from 14 different artists from Wikiart.org. We

randomly select 6000 paintings from 8 artists. Among

them, 5000 paintings are used for training, and 1000

paintings are used for testing.

It is difficult to evaluate the quality of translated images

[17]. We assess the quality of images from both subjective

and objective perspectives.

Amazon Mechanical Turk (MTurk) [11]: translated

images are provided to Turkers, and the Turkers vote on

which image is more reasonable, the more votes there are,

the better the image quality.

Reconstruction loss: An image a from domain A is

translated into image ci in different domains from A, and

then each image ci is converted back to domain A (denoted

by Cycle_ai). We calculate the L1 distance between a and

each Cycle_ai; the smaller the reconstruction error is, the

better the translation model.

The experimental environment is a computer equipped

with an Intel Xeon(R) CPU (E5-1650 v4 @ 3.60 GHz) and

an Nvidia GTx1080 GPU with 64 GB memory. The deep

learning framework is TensorFlow. During the training

phase, we randomly select a number of training images and

calculate the reconstruction error of the translation model.

We stop training when the reconstruction error of the

model becomes stable.

Input Image LGAN

(GAN)
LGAN + Lcycle

(HssGAN)
LGAN + Lcycle

+ LGAN_Latent

(HssGAN-HAL)

Fig. 5 Samples generated by HssGAN with different loss functions

Table 2 Reconstruction errors for the translation models on the paired

dataset

Reconstruction GAN HssGAN HssGAN-HAL

pho.-[map-[ pho 281 103 97

Table 3 MTurk ‘‘real vs fake’’ evaluation on the paired dataset

Map-[Photo(%) Photo-[Map(%)

Loss Turkers labeled real Turkers labeled real

CoGAN 0.6 0.9

BiGAN/ALI 2.1 1.9

SimGAN 0.7 2.6

Cycle GAN 26.8 23.2

HssGAN 24 22

HssGAN-HAL 24 22
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4.2 Experimental results and analysis

4.2.1 Experiments on a paired dataset

Experiment 1(Ablation Study): We select the first dataset

as the experimental data. This dataset is a paired dataset

that provides maps and the corresponding aerial photos. To

evaluate the performance of the proposed models, we

performed ablation experiments with different loss func-

tions on the paired dataset. The first loss function only

includes the GAN loss LGAN (the first term of Eq. (5)). The

second loss function includes the GAN loss LGAN and the

cycle consistency loss Lcycle (the second term of Eq. (5)).

The third loss function includes LGAN, Lcycle and the

adversarial loss for the hidden space LGAN_Latent (see

Eq. (4)). The translation models trained using these three

loss functions are denoted by GAN, HssGAN, HssGAN-

HAL, respectively. Figure 5 shows several samples gen-

erated by the generators trained using the different loss

functions.

From Fig. 5, we can see that compared with the images

in the second column, the images in the third column and

fourth column have better quality. This finding shows that

the cycle consistency loss and adversarial loss for the

hidden space are useful for improving the performance of

the generators. For the paired dataset, we cannot see sig-

nificant differences between the images in the third column

and fourth column. In this experiment, there are only two

image domains, and the dataset is a paired dataset; there-

fore, the adversarial loss for the hidden space becomes

unimportant, and the encoder in HssGAN can easily learn

better representations of the input data using only the cycle

consistency loss.

To objectively evaluate the performance of HssGAN

and HssGAN-HAL, we reconstruct the original images

from the translated images and use the reconstruction error

to evaluate the performance of the translation models. We

select a testing image x from one domain and translate it

into image y in another domain and then use y as the input

to reconstruct x. The recovered image is denoted by z. The

reconstruction error is defined as the number of different

pixels between x and z. The reconstruction errors of the

different translation models are shown in Table 2. From

Table 2, we can see that the reconstruction errors of the

HssGAN and HssGAN-HAL models are much smaller than

that of the GAN model, and the construction error of the

Fig. 6 Images translated using the GAN model
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HssGAN-HAL model is slightly lower than that of the

HssGAN model. This finding shows that the adversarial

component can push the encoder to learn a better repre-

sentation of the input data and improve the performance of

the HssGAN. In Tables 2, 3, 4, 5, 6, 7, and 8, the best

experimental results are shown in bold.

Experiment 2 (Performance comparison of different

translation models): We compare the proposed models

against several translation models, CoGan (Liu et al., [16]),

BiGan/ALI [18, 19], SimGAN (Sharivastava et al., 2016)

and CycleGAN. Except for CycleGAN, all the other

algorithms need to be trained using a paired dataset. We

invited 50 participants to make the MTurk evaluation on

the translation results. Table 3 gives the performance on

the MTurk perceptual realism task (the performance of

other models is cited from the paper by Zhu et al. [2]). The

ablation study shows that for a paired dataset, we can

obtain high quality images using only the cycle consistency

loss. Table 3 shows similar results. In Table 3, HssGAN

and HssGAN-HAL have the same performance, which can

fool 24 percent of the participants in the map ? photo

direction and 22 percent of the participants in the

photo ? map direction. Like CycleGAN, HssGAN and

HssGAN-HAL all use the cycle consistency loss to con-

strain the mapping between different domains, so their

performance is comparable to that of CycleGAN and better

than other generative adversarial network models.

4.2.2 Experiments on an unpaired dataset

Experiment 1(Ablation Study): We select the second

dataset as the experimental data. This dataset is an unpaired

dataset that includes photos of the Alps over four seasons.

The images in each season represent an image domain, so

we use the proposed method to train translation models that

can translate images among four domains. We first perform

ablation experiments to evaluate the performance of the

proposed models. The loss functions are the same as those

used in Sect. 4.2.1.

Fig. 7 Images translated using the HssGAN model
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Some image samples translated by the GAN, HssGAN

and HssGAN-HAL models are shown in Figs. 6, 7 and 8,

respectively. In each figure, the images on the diagonal are

the ground-truth images. From left to right, the images on

the diagonal come from the spring domain, summer

domain, autumn domain and winter domain. Each image

on the diagonal is converted into images in the other

domains, and these converted images are shown in each

row. The images in each row from left to right represent

images in the spring domain, summer domain, autumn

domain and winter domain, respectively.

From the images in Fig. 6, we can see that using only

the GAN loss, the translation model fails to generate

images close to the target domain. Compared with the

ground-truth images on the diagonal, all the generated

images are fuzzy and unreasonable.

Compared with the quality of the images generated by

the GAN model, the quality of the images generated by the

HssGAN model (see Fig. 7) is significantly improved, and

the styles of the images are similar to their corresponding

target domains because the cycle consistency loss provides

a supervised signal for image translation between different

domains and can avoid generating images that contradict

each other.

As shown in Figs. 7 and 8, HssGAN-HAL and HssGAN

generate images of similar quality. However, the images

generated by HssGAN-HAL are more reasonable than the

images translated by HssGAN. The translated images in

Fig. 9 show more obvious seasonal characteristics; for

example, in the second row, the mountain in the winter

image is covered by snow (the mountain in the corre-

sponding image generated by HssGAN is green); in the

third row, the snow on the trees in the spring and summer

images disappears (there is snow on the trees in the cor-

responding images generated by HssGAN), and in the

fourth row, the trees in the spring and summer images are

green (the trees in the corresponding images generated by

HssGAN are green mixed with yellow). In HssGAN-HAL,

the adversarial learning component is a supervised classi-

fier; it knows the domain label of each training data.

Fig. 8 Images translated using the HssGAN-HAL model
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Therefore, the adversarial component in the hidden space

can provide a supervised signal for the encoder and guide

the encoder to learn more meaningful feature representa-

tions of different domains.

Table 4 MTurk ‘‘real vs fake’’

evaluation on the GAN,

HssGAN, and HssGAN-HAL

models

Seasons GAN(%) HssGAN(%) HssGAN-HAL(%)

Turkers labeled real Turkers labeled real Turkers labeled real

sp-[ su 2 20 26

su-[ sp 0 20 26

sp-[ au 2 34 58

au-[ sp 0 20 20

sp-[wi 0 30 40

wi-[ sp 4 34 36

su-[ au 0 20 40

au-[ su 6 46 40

su-[wi 0 30 66

wi-[ su 0 36 40

au-[wi 2 40 52

wi-[ au 2 44 54

Avg 1.7 31.2 41.5

Fig. 9 Images translated using the CycleGAN model [2]
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We invited 50 participants to make the MTurk evalua-

tion on the translation results. Table 4 gives the perfor-

mance on the MTurk perceptual realism task. In Table 4,

sp, su, au and wi are abbreviations for spring, summer,

autumn and winter, respectively. Table 4 shows that the

performance of the HssGAN and HssGAN-HAL models is

significantly better than that of the GAN model, and the

performance of the HssGAN-HAL model is significantly

better than that of the HssGAN model, which can be

approximately 10 percent higher than that of the HssGAN

model. This finding shows that both the cycle consistency

loss and the adversarial loss for hidden space are critical to

our results.

We also calculate the reconstruction errors of the three

models, which are shown in Table 5. We obtain a similar

result: the HssGAN-HAL model has the smallest recon-

struction error, and the reconstruction errors of the

HssGAN and HssGAN-HAL models are significantly

lower than that of the GAN model.

Experiment 2 (Performance comparison of different

translation models): We compared the proposed models

with CycleGAN and ComboGAN [15]. For CycleGAN, we

need to train 12 generators and 12 discriminators. In

ComboGAN, the encoder and decoder in the generator are

separate, and the output of an encoder can be sent to dif-

ferent decoders. Unlike HssGAN, in ComboGAN one

encoder and one decoder are designed for each domain.

Therefore, we need to train four encoders and four deco-

ders in a ComboGAN model. For HssGAN and HssGAN-

HAL, we only need to train one common encoder and four

decoders. In our experiments, the encoders and decoders in

the different models have the same network structures,

which are shown in Table 1.

Some image samples translated by CycleGAN and

ComboGAN are shown in Fig. 9 and Fig. 10, respectively.

Compared with HssGAN, CycleGAN and ComboGAN can

generate images with obvious seasonal features. For

example, in Fig. 7, the images in the first and second col-

umns generated by HssGAN are very similar, while the

images in the first and second columns in Figs. 10 and 11

have distinct seasonal features. In CycleGAN and Com-

boGAN, each domain has an encoder. It is easy for the

encoder to learn accurate feature representations of images

from only one domain. However, in HssGAN, all domains

share one encoder; therefore, it is difficult for the common

encoder to learn accurate feature representations from

different domains. This is also the reason why we add the

adversarial component to HssGAN. When adding the

adversarial component, the image quality generated by

HssGAN-HAL (see Fig. 8) is comparable to that generated

by CycleGAN and ComboGAN.

Although the images translated by CycleGAN and

ComboGAN show more seasonal features, these images

also contain some obvious translation errors. For example,

in the images in the second row in Fig. 9, the waterfall

becomes blue, some parts of the mountain become black,

and in the images in the third row, some trees become

black. In the images in the second row in Fig. 10, the

waterfall and parts of the mountain become black. The

summer image in the fourth row in Fig. 10 shows snow-

covered trees. Compared with the images translated by

CycleGAN and ComboGAN, there are no obvious trans-

lation errors in our images. The common encoders in

HssGAN and HssGAN-HAL are trained using images from

different domains; therefore, they can learn more domain

knowledge, which can guide the respective encoders to

generate more correct encodings for objects.

The same MTurk ‘‘real vs fake’’ test is performed to

assess the performance of the different translation models.

Table 6 gives the performance on the MTurk perceptual

realism task. Table 6 also shows that the performance of

HssGAN-HAL is comparable to that of CycleGAN and

ComboGAN. CycleGAN has the best performance and

slightly outperforms HssGAN-HAL and ComboGAN. In

our experiments, there are four image domains. We need to

train 12 generators for CycleGAN and six decoders and six

encoders for ComboGAN. For HssGAN-HAL, we only

need to train one encoder and six decoders. From Table 6,

we can see that the training cost of HssGAN-HAL is sig-

nificantly lower than those of CycleGAN and ComboGAN.

We also calculate the reconstruction errors of the dif-

ferent translation models, which are shown in Table 7.

Table 7 shows similar results as those of Table 6. HssGAN,

Table 5 Reconstruction error of the GAN, HssGAN and HssGAN-

HAL models

GAN HssGAN HssGAN-HAL

Seasons Recon. Loss Recon. Loss Recon. Loss

sp-[ su-[ sp 229 129 127

sp-[ au-[ sp 243 137 134

sp-[win-[ sp 239 139 109

su-[ sp-[ su 323 125 120

su-[ au-[ sur 249 123 110

sur-[wi-[ su 272 134 127

au-[ sp-[ au 280 115 110

au-[ su-[ au 301 61 70

au-[wi-[ au 256 142 138

wi-[ sp-[wi 272 122 117

wi-[ su-[wi 305 120 105

wi-[ au-[wi 349 144 117

Avg. err 276 124 115

Training time 24 h 28 h 30 h
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CycleGAN and ComboGAN output similar reconstruction

errors. Among them, CycleGAN has the lowest recon-

struction error.

Experiment 3: Besides MTurk and reconstruction loss,

we also use Kernel Inception Distance (KID) (Mikolaj

et al., 2018) and classification accuracy to quantitatively

evaluate the overall performance of different image trans-

lation models. KID is defined as the squared maximum

mean discrepancy between feature representations of real

and generated images. Such feature representations are

obtained from the Inception network [20]. In contrast to

other criteria, KID has an unbiased estimator, which makes

it more reliable, especially when there are fewer test ima-

ges than the dimensionality of the inception features. A

good image-to-image translation should have a low KID

value which indicates higher visual similarities between the

generated images and the real images. In our work, we

build four datasets, and each dataset contains 50 real

images and 50 generated images from the same domain.

We input images into the Inception network, and then

obtain the feature representations of all images. We cal-

culate the KID value for each dataset, and use the mean

KID value over the four datasets to evaluate the perfor-

mance of each translation model. The experimental results

are shown in Table 8.

In addition, to evaluate the classification accuracy on the

generated images, we also choose Inception network [20]

as the classifier due to its better performance for object

recognition. We use its publicly released model pretrained

on the ImageNet dataset, and use a softmax layer as the

classification layer which is refined using the second

dataset in our work. The training dataset contains 4000

photos of the Alps, each labeled with its season. We select

50 generated images from each domain as the testing

dataset. The classification accuracy is defined as the frac-

tion of test images which are correctly classified by the

refined Inception network. The experimental results are

also shown in Table 8.

We get the similar results as that in Experiment 2. The

CycleGAN produces the best results. However, the

Fig. 10 Images translated using the ComboGAN model [15]
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performance of HssGAN is comparable to CycleGAN and

ComboGAN. The performance of HssGAN is significantly

lower than that of HssGAN-HAL, which also proves that

the adversarial component in the hidden space can improve

the feature representation power of the common encoder.

Experiment 4: We use even more image domains to

evaluate the performance of HssGAN-HAL. The third

dataset contains paintings from fourteen artists. We select

the paintings of eight artists from the dataset and train a

model that can translate images among the eight domains.

Due to the limited computing resources, we only evaluate

Fig. 11 The translated samples of the different artists
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the performance of HssGAN-HAL. Some translated sam-

ples generated by HssGAN-HAL are shown in Fig. 11. The

images on the diagonal are the ground-truth images, and

each column represents a painting style. It is more difficult

to evaluate whether a translated painting has the painting

style of a target domain in this dataset than in the other

datasets. We can simply see that the paintings in each

column have similar textures and similar colors, which

shows that HssGAN-HAL has the capability to translate

images among even more domains.

5 Conclusion

In this paper, we propose a novel GAN structure named

HssGAN to reduce the computing complexity of Cycle-

GAN for translating images among multiple domains.

HssGAN contains only one common encoder that is used to

learn the common features of the different domains.

Therefore, the model complexity of HssGAN increases

linearly with the number of image domains. In addition, we

Table 6 MTurk ‘‘real vs fake’’

evaluation on the different

translation models

Seasons CycleGAN(%) HssGAN(%) HssGAN-HAL(%) ComboGAN (%)

Turkers labeled real Turkers labeled real Turkers labeled real Turkers labeled real

sp-[ su 30 20 26 30

su-[ sp 30 20 26 28

sp-[ au 64 34 58 64

au-[ sp 20 20 20 20

sp-[wi 30 30 40 30

wi-[ sp 44 34 36 40

su-[ au 30 20 40 30

au-[ su 46 46 40 46

su-[wi 70 30 66 65

wi-[ su 46 36 40 46

au-[wi 60 40 52 55

wi-[ au 54 44 54 52

Avg.MTurk 43.6 31.2 41.5 42.1

Training

Time 468 h 28 h 30 h 120 h

Table 7 Reconstruction errors

of the different translation

models

Seasons CycleGAN HssGAN HssGAN-HAL ComboGAN

Recon. Err Recon. Err Recon. Err Recon. Err

sp-[ su-[ sp 124 129 127 120

sp-[ au-[ sp 129 137 134 132

sp-[wi-[ sp 116 139 109 115

su-[ sp-[ su 118 125 120 123

su-[ au-[ su 119 123 110 122

sur-[wi-[ su 126 134 127 128

au-[ sp-[ au 100 115 110 108

au-[ su-[ au 58 61 70 60

au-[wi-[ au 120 142 138 125

wi-[ sp-[wi 115 122 117 110

wi-[ su-[wi 96 120 105 100

wi-[ au-[wi 112 144 117 120

Avg. Recon. Err 111 124 115 113

Table 8 KID value and classification accuracy of the different

translation models

Model CycleGAN HssGAN HssGAN-HAL ComboGAN

KID Value 10.85 12.10 11.02 11.21

Class. Acc 83.0% 76% 81.5% 80.5%
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introduce the generative adversarial component into

HssGAN and use adversarial training to further improve

the representational power of the common encoder.

The experimental results show that the proposed model

can significantly decrease the time cost for model training,

and the translated results are comparable to those of

CycleGAN and ComboGAN. In our study, we run MTurk

‘‘real vs fake’’ test to evaluate the quality of the generated

images, which is a labor intensive work. How to evaluate

the quality of the generated images objectively and effec-

tively is our future research work.
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